Bayesian Learning in Nonlinear State-Space Models
نویسندگان
چکیده
We describe Bayesian learning in nonlinear state-space models (NSSMs). NSSMs are a general method for the probabilistic modelling of sequences and time-series. They take the form of iterated maps on continuous state-spaces, and can have either discrete or continuous valued output functions. They are generalizations of the more well known state-space models such as Hidden Markov models (HMMs), and Linear-Gaussian statespace models (LSSMs). In this paper, we describe the problems of Bayesian learning and inference and in NSSMs. We present an MCMC methods of sampling from the posterior of the parameters given observed data. This method involves the iteration of a parameter estimation step given known statespace trajectories, and state-space inference step given known parameter values. It bears a superficial similarity to the EM algorithm, can be compared with other MCMC methods such as Gibbs sampling.
منابع مشابه
Modeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market
Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...
متن کاملVariational Gaussian Process State-Space Models
State-space models have been successfully used for more than fifty years in different areas of science and engineering. We present a procedure for efficient variational Bayesian learning of nonlinear state-space models based on sparse Gaussian processes. The result of learning is a tractable posterior over nonlinear dynamical systems. In comparison to conventional parametric models, we offer th...
متن کاملVariational Bayesian learning of nonlinear hidden state-space models for model predictive control
This paper studies the identification and model predictive control in nonlinear hidden state-space models. Nonlinearities are modelled with neural networks and system identification is done with variational Bayesian learning. In addition to the robustness of control, the stochastic approach allows for various control schemes, including combinations of direct and indirect controls, as well as us...
متن کاملUnsupervised Variational Bayesian Learning of Nonlinear Models
In this paper we present a framework for using multi-layer perceptron (MLP) networks in nonlinear generative models trained by variational Bayesian learning. The nonlinearity is handled by linearizing it using a Gauss–Hermite quadrature at the hidden neurons. This yields an accurate approximation for cases of large posterior variance. The method can be used to derive nonlinear counterparts for ...
متن کاملAdvanced Probabilistic Models for Speech and Language
This project proposal applies to the statistical and machine learning models used in speech and language research. It aims to develop a more general theoretical framework for the use of state-space models in speech and language, and to expand the set of models currently used in these fields. Probabilistic Models State-Space Models Generalized SSMs Nonlinear SSMs Bayesian Learning Inferring Traj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004